Analysis of the L1-Deficient Mouse Phenotype Reveals Cross-Talk between Sema3A and L1 Signaling Pathways in Axonal Guidance
نویسندگان
چکیده
In humans, defects of the corticospinal tract have been attributed to mutations in the gene encoding L1 CAM, a phenotype that is reproduced in L1-deficient mice. Using coculture assays, we report that Sema3A secreted from the ventral spinal cord repels cortical axons from wild-type but not from L1-deficient mice. L1 and neuropilin-1 (NP-1) form a stable complex, and their extracellular domains can directly associate. Thus, L1 is a component of the Sema3A receptor complex, and L1 mutations may disrupt Sema3A signaling in the growth cone, leading to guidance errors. Addition of soluble L1Fc chimeric molecules does not restore Sema3A responsiveness of L1-deficient axons; instead, it converts the repulsion of wild-type axons into an attraction, further supporting a function for L1 in the Sema3A transducing pathways within the growth cone.
منابع مشابه
FAK-MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse.
Axonal receptors for class 3 semaphorins (Sema3s) are heterocomplexes of neuropilins (Nrps) and Plexin-As signalling coreceptors. In the developing cerebral cortex, the Ig superfamily cell adhesion molecule L1 associates with Nrp1. Intriguingly, the genetic removal of L1 blocks axon responses of cortical neurons to Sema3A in vitro despite the expression of Plexin-As in the cortex, suggesting ei...
متن کاملHeterophilic Binding of L1 on Unmyelinated Sensory Axons Mediates Schwann Cell Adhesion and Is Required for Axonal Survival
This study investigated the function of the adhesion molecule L1 in unmyelinated fibers of the peripheral nervous system (PNS) by analysis of L1- deficient mice. We demonstrate that L1 is present on axons and Schwann cells of sensory unmyelinated fibers, but only on Schwann cells of sympathetic unmyelinated fibers. In L1-deficient sensory nerves, Schwann cells formed but failed to retain normal...
متن کاملThe vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion
Attractive and repulsive molecules such as Semaphorins (Sema) trigger rapid responses that control the navigation of axonal growth cones. The role of vesicular traffic in axonal guidance is still largely unknown. The exocytic vesicular soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor (SNARE) Synaptobrevin 2 (Syb2) is known for mediating neurotransmitter release in m...
متن کاملBrain development in mice lacking L1–L1 homophilic adhesion
A new mouse line has been produced in which the sixth Ig domain of the L1 cell adhesion molecule has been deleted. Despite the rather large deletion, L1 expression is preserved at normal levels. In vitro experiments showed that L1-L1 homophilic binding was lost, along with L1-alpha5beta1 integrin binding. However, L1-neurocan and L1-neuropilin binding were preserved and sema3a responses were in...
متن کاملA functional coupling between CRMP1 and Nav1.7 for retrograde propagation of Semaphorin3A signaling.
Semaphorin3A (Sema3A) is a secreted type of axon guidance molecule that regulates axon wiring through complexes of neuropilin-1 (NRP1) with PlexinA protein receptors. Sema3A regulates the dendritic branching through tetrodotoxin (TTX)-sensitive retrograde axonal transport of PlexA proteins and tropomyosin-related kinase A (TrkA) complex. We here demonstrate that Nav1.7 (encoded by SCN9A), a TTX...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 27 شماره
صفحات -
تاریخ انتشار 2000